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or alternatively,

(f,, to) (f,, ?,) . “ (to, 3N)
(7,, 30) (21, 71) . . “ (f,, YN)

1 . . . . . . . . . . . .

. . . . . . . . .

(G, ~,) . . . (fAT, fiv)

where the scalar products (~~,, ~~) are as defined by

(69). Formulas for Z,, are (74) and (75) with all ifi’s re-

placed by the corresponding ~.’s. Formulas for 222 are

(74) and (75) with all ~n’s replaced by the correspond-

ing fm’s.

To illustrate the difficulty that occurs if Jtj does not

have the same number of variational parameters as

J,j, suppose

(76)

[This choice was purposely excluded by (71). ] The

mutual impedance (74) or (75) then becomes

(fo, -f,)(11, fo)
Z12 = (70, 10) –

(f,, YJ “
(77)

As the two objects are separated

(70, Yo) + o (f,, ~J + o, (78)

because these products involve

objects, and

A4ay

currents on different

(79)

(C’s denote constants) because they involve currents on

the same object. Hence, as the two objects are separated,

by (77) one has Zlz-+~ , an impossibility. This absurd

result can be explained by noting that

(80)

in the variational solution, and, hence, no value of al can

improve the solution. The parameter bl behaves simi-

larly. One can view this as a poor choice of trial func-

tions. However, if JM is chosen to have the same num-

ber of variational parameters as J2z, and similarly

for J,z and JII, as required by (71), then the difficulty

does not arise. To show this, note that, as the objects are

separated, the denominator

constants

of (75) becomes of the form

o’s

_—— —— (81)

I
0’s ] constants

I I

which is finite. If Jij does not have the same number of

variational parameters as J,j, then one or more rows or

columns of zeros appear” in the “constants” sections of

(81), and the denominator of (75) vanishes as the ob-

jects are separated. Of course, no such difficulty arises

in the calculation of 211 and 222.
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Summary—A new procedure of matching is presented, based
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of a Iossless two-port network into the input reflection coefficient.
The parameters of the equations are the residual reflection coeffi-

cients which can be easily measured. The optimum reflection coeffi-
cients which have the minimum frequency variation are computed
for the specific case when the frequency variation of the residual re-
flection coefficients can be approximated by a circular arc in the
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mination of the position and the size of the inductive obstacles that
match a waveguide two-port structure within a wide frequency band.
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1. INTRODUCTION

T

HERE ARE a considerable number of waveguide

structures that can be represented by an equiv-

alent two-port network. Waveguide bends,

rotary joints, coaxial-to-waveguide transducers and

many other waveguide components are typical ex-

amples of lossless two-port waveguide structures. Fre-

quently these components are not completely matched

and, in spite of careful design, they produce a dis-

continuity in the waveguide system. The aim of this

article is to present a method that will make it possible

to match the residual reflections of a two-port wave-
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guide structure, not only at a single frequency but also

within a given frecluency band.

Methods are treated in the literature only- for wide-

band matching of microwave one-ports. 1 Their pro-

cedure of matching is based on measured values of

impedance, plotted on a rectangular or on a Smith

diagram. To the author’s knowledge an analogous

method for two-ports does not exist.

II. DISCUSSION

A. Transformation of the Reelection Coefficient through a

Two-PoYt Network

At lower frequencies, a two-port network is treated

as an impedance transformer.2 In the microwave fre-

quency region, however, the idea of impedance loses

much of its original significance. We shall therefore

devote our attention to the reflection coefficient, which

is a basic concept in transmission line theory.

Accordingly, we shall be primarily interested in the

output-i nput transformation of the reflection coefficient,

without using impedance or admittance.3,4 It can be

shown that the load reflection coefficient g, will be

transformed into an input reflection coefficient gl [Fig.

1 (a)] expressed by

glo g, – i?20
gl = ~. (1)

g,o g,g20 – 1

The term gl~ is the residual input reflection coefficient

which we can measure at the waveguide input when the

output is terminated reflectionless (g, = O). Similarly,

gzo signifies the residual output reflection coefficient

which can be measured at the waveguide output when

the input is terminated reflectionless (g, = O). Cor-

responding complex-conjugated values are denoted by

ZIO ancf E20. When the load g. at the input is given and we

wish to know the reflection coefficient

[Fig. 1 (b)], the transformation reads

g?o g. — Zlo
g2 = ~.

glo g.glo – 1

g2 a~ the output

(2)

The behavior of the two-port Iossless network is, there-

fore, completely determined by the measured values of

two complex reflection coefficients (glo and gzo), despite

the fact that we know nothing about the components

that constitute the interior of the structure. Moreover,

both measurements of complex quantities are not in

fact strictly necessary, for glo being known, the modulus

i J. i% Nelson and G. Stavis, “Impedance matching, Transformers
and Baluns” in ‘l’ery High Frequency Techniques, ” NIcGraw-Hill
Book Co., Inc., New York, N. Y:, vol. I, pp. 53-92; 1947.

z L. Gyergyek, “The four-termmal networks and the linear trans-
formations, ” Elec. Rev. (Yugosl. ), vol. 22, pp. 287–293; September–
October, 1954.

3 H. IT. Shurmer, “Transformation of the Smith chart through
losdess junctions, ” Proc. IEE, I-ol. 105, pt C, pp. 177–182; hIarch,
1958.

4J. R. G. Twisleton, ‘(The transformation of admittance through
a matching section and Iossless wal-eguide junction, ” Proc. IEE, vol.
106, pt. B, pp. 175-179; March, ~959.
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Fig. l—The transformation of reflection coefficients through
a two-port. (a) gl =gl(g,). (b) gz=gs(g.).

of gso is determined too, because for all lossless two-

ports the equation holds:

Igl”l = jg20\.

B. Frequency Independent Transformation

Although (1) and (2) are valid for general lossless

two-port structures, we want now to introduce some

simplifications that will contribute considerably to the

clarity and simplicity of the following discussion. We

have, assuming the case of relatively small reflections,

This leads to the simplification of (1) and (2):

glo
gl=glo–ggr (3)

g20

g20

gz = g’20 – ~ g,.

glo

(4)

Let us now investigate the behavior of the transforma-

tion in the given frequency band. Every two-port net-

work has its specific behavior of frequency response of

the residual reflection coefficients, which could be

checked by measurement. One possible example of thk

measured values (thick curve) is shown in Fig. 2. This

figure and many other similar plots lead to the conclu-

sion that the reflection coefficient response can be rep-

resented approximately by the arc of a circle (thin curve

on Fig. 2), the center of which is shifted to the point

RIo :

glo = RIO + rloeJP1(f–fO), (5)

where j; denotes the center frequency of the frequency

band. The frequency response of gzo can be correspond-

ingly, in most cases, approximated by the expression

Real quantities pl and pa are expressed in arc degrees per

IYIc arrcl determine the rate at which the point is cir-

culating around the diagram when the frequency f is

changing.

Let IIS now consider the transformation (3) and re-

quire the transformation to be frequency independent.
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Fig. 2—Typical plot of input reflection coefficient (thick curve),
which can be approximated with a circle arc (thin curve).

We choose a constant load reflection coefficient g,~ to

transform it into one constant value of frequency inde-

pendent input reflection coefficient gl~. We require that

dg,(H =0,
d“ f=fo

(7)

Using the rule for derivation of indirect functions, we

obtain (8) from (3), and (5)–(7) :

E200
gr~ =

glooPfl~20
1+

E2OOP1?’1O

(8)

where gloo and g~oo denote the residual reflection co-

efficients at the center frequency (see Fig. 2). Then we

have

gloo = (glo)f=fo = RIO + ~lo (9)

g200 = (gzo)f=fo = R20 + ~20. (lo)

From (3) we find that the load reflection coefficient g,~

will be transformed in the input reflection coefficient gl~:

gloo

glk =

E2OOP17’1O
1+

— (11)

glooP2?20

After having terminated the output terminals in a load,

then the two-port network will transform the load re-

flection coefficient g,k into the vicinity of one point glk

only, almost independent of frequency. Thus the trans-

formation is frequency independent, although the

measurements of glo and gz~ have shown that the

parameters of the two-port network vary with fre-

quency.

Matching of the two-port network will be attained if

we terminate its input in a circuit having the reflection

coefficient g,k that is equal to the conjugate value of the

reflection coefficient gl~. The matching condition there-

fore is

g,.? = glk, (12)

where g,k designates the reflection coefficient of the in-

put circuit required for frequency independent match-

ing of the two-port network which is loaded with g~k.

We shall call g,], and g.~ the optimum reflection co-

efficients. In order to match the two-port network in an

almost frequency independent manner, the input and

output circuits should have the following reflection co-

efficients:

Z200
g,k = (13)

glooP2720
1+

E2OOP171O

and

Eloo

gak = (14)
g200Plilo

1+
G1OOP272O

C. Example of Freqllency Independent T~ansformation

Assume we have the two-port network shown in Fig.

3. Let the waveguide have constant dimensions (RG-

48/U) throughout its length. Let the lengths 19Z1and

0., corresponding to the center frequency (3000 Mc)

be 150° and 40°, respectively. The normalized suscept-

ances jO.2 and —jO.3 are assumed to be frequency in-

dependent. We shall investigate the two-port network

properties over the frequency band 2800–3200 Mc.

ox, e

e

x2

j ~2 ‘J (33

d c b

Fig. 3—Example of a two-port.

We shall now compute the residual reflection co-

efficients glo and gzo, which could be obtained from

measurements of network on Fig. 3. The results are

shown in Fig. 4. At the center frequency we read the

values of the residual reflection coefficients as

glOfl = 0.137ej80 and gzoo = 0.137 e’15g”.

As we see, we can replace this reflection coefficient plot

well by the circle arcs. At the center frequency, the
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Fig. 4—The residual reflection coeflkients gIO and ,gso for the two-port

fronl Fig. 3. It also shows the transformation of g,r, into gl],,
which does not vary with frequency-.

complex radii ~ln and YZOare found to have these values:

Y1O= 0.148e–~~z0 and YZO= 0.09.5eJgg0.

By dividing the angle differences (designated in Fig. 4

as A&l and A$J, by the frequency difference, the rates

of rotation are found to be

A&l 76
o.190°/Mc

“ = 3200 – 280i = – 400 = –

A& 88
– o.220°/’’lrc.

“ = 3200 – 2800 = – 400 =

Input and output optimum reflection coefficients are

obtained from (13) and (14):

ga~ = 0.0904 e–lGg0, grh = 0.122 e)16L0.

We next check on the Smith chart to see whether the

transformation is frequency independent. The pro-

cedure of transformation is shown in Fig. 4. The load

reflection coefficient is transformed along the length

(?ZZinto the point c in such a way that g,~ is rotated clock-

wise by the angle X?tz, which depends on frequency.

Afterwards the susceptance –~0.3 is added and the

reflection coefficient response denoted by c! is obtained.

After the new Mr, degrees rotation we get the reflec-

tion coefficient at point d. Addition of the susceptance

jO.2 leads finally to the point d’ representing the input

reflection coefficient. At the center frequency the input

reflection coefficient is equal to the computed value

gl~ = ~,i, and it differs negligibly from this value at other

frequencies. As we see, the transformation is almost

completely frequency independent.

D. Example of Wide-Band Mafching Procedure

It is not possible, however, to terminate the wave-

guide Iwo-ports with optimum reflection coefficients

chosen anywhere on the Smith chart. The two-port

network is usually terminated in a matched waveguide

(its reflection coefficient is zero) to which we connect in

paralle ~an inductive iris. The width of the iris aperture

controls the magnitude of the parallel susceptance,

which we suppose here to be independent of frequency.

Collseq uently, only those values of the optimunl reflec-

tion coefficients are available, whose corresponding

points lie on the R = 1 circle of the Smith chart. We

have therefore to extend the two-port network by an

additional length 01 and O, of the waveguide, as shown

in Fig. 5. As a result of this extension, the reflection co-

efficients g,~, and g, j, fall on the R = 1 circle of the Smith

chart. The matching irises are then placed there.

1- “ + ‘x’ -k ‘x’ -1- ‘2 4

k -JB7 + j~,~ ‘j 0,3
E

Fig. 5—Addition of the inductive susceptances in order to
match the two-port from Fig. 3.

According to Fig. 4, g,l, will reach the negative

R = 1 circle provided that the output terminals are

shifted by 20Z = 116°. Similarly, the input terminals

should be shifted by 201= 344°. The shift of the input

and output terminals results in the rotation of the

residual reflection coefficients glo and gx}. If this rotation

were frequency independent, this procedure would be

easy. IJnfortunately, the rotation increases with in-

creased frequency. The length 201, corresponding to the

frequerlcy 2800 klc, is shorter by 44° than the value at

the center frequency, and at the frequeucy 3200 hlc it is

longer by the same amount. The glo plot is therefore

somewhat lengthened, as shown in Fig. 6. The mean

rotation 261 was not shown in order to get [L clearer

picture. The mean rotation is the same for all points:

g100’ = g100e–’26’ = o.137e–J3360

g>oo’ = g2”oe–,282 = 0.137 e’A30.

Let us IIOW find the new centers of curvature denoted by

R,,,’ and Rzo’. Following the same procedure, we read the

new circle radii and the rates of rotation. By using (13)

and (14), we can evaluate the corrected optilnum reflec-

tion coefficients,

,;?.h’ = 0.109 e–~c5’ and g.1,f = 0.0j~8e–J730
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Fig. 6—Calculation of optimum reflection coefficients g,~ and g,l.

where g,k’ and gshr have now approached the R = 1

circle. We have to correct the values of 291 and 2& and

to repeat the whole procedure. By this trial and error

method we finally obtain

2el” = 334”, 2ez” = 97”.

The susceptance values of the irises can be read on the

Smith chart as

BI = 0.11 and B2 = 0.23.

Having determined the position and size of the inductive

irises that lead to the frequency independent matching

of the given two-port network, our problem is solved.

To check the frequency behavior of matching over

the frequency band of 2800 to 3200 Mc, we shall com-

pute the input impedance using the Smith chart in

Fig. 7. We shall begin from the output side, where the

reflection coefficient grh “ is connected at the point a.

Rotation 2 (6j+8~z) degrees gives the reflection co-

efficient at point c. Adding the parallel susceptance

–jO.3 we then get the reflection coefficient denote by

c’. Rotation of 26ZI gives the curve d, and addition of

the susceptance jO.2 leads later to the curve d’. After

291 rotation we get the curve e, to which we add the

susceptance —jBl= —jO. 11 in parallel. So, a quite well

matched input has been achieved (reflection coefficient

900

’90”

Fig. 7—Transformation of the load reflection coefficient a (inductive
obstacle added ) into an input reflection coefficient e’. Compare
the matched reflection coefficient e’ with the unmatched glo from
Fig. 4.

e’). Within the 2900–3200 IJfc band the VSWR is less

than 1.05 and within the 2800 to 3200 Mc band it is less

than 1.1.

III. CONCLUSIONS

For considerable number of waveguide Iossless two-

ports the frequency behavior of residual reflection co-

efficients may be approximated by circular arcs. Each

two-port of such a kind has one fixed pair of optimum

reflection coefficients (grk and g.k), which are trans-

formed through the two-port independent of frequency.

To utilize this fact for wide-band matching of two-ports,

the reflection coefficient of external input and output

circuit must be made equal to grh and g,h. In the method

described, the matching is attained by putting the in-

ductive obstacles at a certain distance from two-port

terminals. The position and the value of inductive

susceptances is calculated from measured curves of

residual input and output reflection coefficients plotted

on a Smith diagram.

For the sake of clarity, it is assumed that the suscept-

ance of obstacles does not vary with the frequency.

This is not true for a very large band of frequencies,

and the correction of position and value of obstacle

must be calculated; this problem is not treated in this

paper.

The method presented is valid for lossless two-ports

but can probably be extended to 10SSY two-ports.


