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or alternatively,
(fﬂ, jo)
(fla jO)

(o, J0) -+ - (Lo, Jw)
(T, Jy) - (T, Ty)

Iv,Jo Tw, Ty -+ - Iy, Tw)
(ilajl) T <j17jN)

(75)

(iN’jl) T (fNyjN)

where the scalar products (7,, J,) are as defined by
(69). Formulas for Zy; are (74) and (75) with all I.s re-
placed by the corresponding J.’s. Formulas for Zs are
(74) and (75) with all J,’s replaced by the correspond-
ing I,'s.

To illustrate the difficulty that occurs if J,; does not
have the same number of variational parameters as

J.;» suppose
]12 = dlfh
]21 = blfl-

]11 = jo
- 76
Jo2 = Iy ( )

[This choice was purposely excluded by (71).] The
mutual impedance (74) or (75) then becomes

(jO)jl)(jlijO)

Zyo = (Io, Jo) — =
12 ( 0 0) (Il, ]1)

(7

As the two objects are separated

(io, fo)—)o (fly jl)—_>07 (78)
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because these products involve currents on different
objects, and

(jo, f1) — Co1 (fl, jo) — Cy (79)

(C's denote constants) because they involve currents on
the same object. Hence, as the two objects are separated,
by (77) one has Z;3;— «, an impossibility. This absurd
result can be explained by noting that
(jly jO)
a; = — —

(ih jl)

(80)

in the variational solution, and, hence, no value of ¢; can
improve the solution. The parameter b, behaves simi-
larly. One can view this as a poor choice of trial func-
tions. However, if Ji2 is chosen to have the same num-
ber of variational parameters as Ji, and similarly
for Jis and Ju, as required by (71), then the difficulty
does not arise. To show this, note that, as the objects are
separated, the denominator of (75) becomes of the form

(81)

which is finite. If J;, does not have the same number of
variational parameters as J,,, then one or more rows or
columns of zeros appear in the “constants” sections of
(81), and the denominator of (75) vanishes as the ob-
jects are separated. Of course, no such difficulty arises
in the calculation of Zi; and Zs,.

Wide-Band Matching of Lossless Waveguide Two-Ports*

DARKO KAJFEZt

Summary—A new procedure of matching is presented, based
in the equations which transform the output reflection coefficient
of a lossless two-port network into the input reflection coefficient.
The parameters of the equations are the residual reflection coeffi~
cients which can be easily measured. The optimum reflection coeffi-
cients which have the minimum frequency variation are computed
for the specific case when the frequency variation of the residual re-
flection coefficients can be approximated by a circular arc in the
Smith diagram. An illustrative example is given to explain the deter~
mination of the position and the size of the inductive obstacles that
match a waveguide two-port structure within a wide frequency band.

* Received by the PGMTT, October 17, 1961; revised manu-
script received, January 2, 1962.
T Institute for Automation, Ljubljana, Yugoslavia.

I. INTRODUCTION
T HERE ARE a considerable number of waveguide

structures that can be represented by an equiv-

alent two-port network. Waveguide bends,
rotary joints, coaxial-to-waveguide transducers and
many other waveguide components are typical ex-
amples of lossless two-port waveguide structures. Fre-
quently these components are not completely matched
and, in spite of careful design, they produce a dis-
continuity in the waveguide system. The aim of this
article is to present a method that will make it possible
to match the residual reflections of a two-port wave-
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guide structure, not only at a single frequency but also
within a given frequency band.

Methods are treated in the literature only for wide-
band matching of microwave one-ports.! Their pro-
cedure of matching is based on measured values of
impedance, plotted on a rectangular or on a Smith
diagram. To the author’s knowledge an analogous
method for two-ports does not exist.

I1. DiscussioN

A. Transformation of the Reflection Coeflicient through a
Two-Port Network

At lower frequencies, a two-port network is treated
as an impedance transformer.? In the microwave fre-
quency region, however, the idea of impedance loses
much of its original significance. We shall therefore
devote our attention to the reflection coefficient, which
is a basic concept in transmission line theory.

Accordingly, we shall be primarily interested in the
output-input transformation of the reflection coefficient,
without using impedance or admittance.®* It can be
shown that the load reflection coefficient g, will be
transformed into an input reflection coefficient g, [Fig.
1(a) ] expressed by

U Z20

(1)
820 g:820 — 1

g1
The term gy is the residual input reflection coefficient
which we can measure at the waveguide input when the
output is terminated reflectionless (g.=0). Similarly,
g signifies the residual output reflection coefficient
which can be measured at the waveguide output when
the input is terminated reflectionless (g,=0). Cor-
responding complex-conjugated values are denoted by
g and gz. When the load g, at the input is given and we
wish to know the reflection coefficient g» at the output
[Fig. 1(b)], the transformation reads

g2 & — £10
Z10 gs810 — 1

g2 (2)

The behavior of the two-port lossless network is, there-
fore, completely determined by the measured values of
two complex reflection coefficients (g1 and gu), despite
the fact that we know nothing about the components
that constitute the interior of the structure. Moreover,
both measurements of complex quantities are not in
fact strictly necessary, for gy being known, the modulus

1 7. A. Nelson and G. Stavis, “Impedance matching, Transformers
and Baluns” in “Very High Frequency Techniques,” McGraw-Hill
Book Co., Inc.,, New York, N. Y., vol. I, pp. 53-92; 1947.

2 L. Gyergyek, “The four-terminal networks and the linear trans-
formations,” Elec. Rev. (Yugosl.), vol. 22, pp. 287-293; September—
October, 1954.

3 H. V. Shurmer, “Transformation of the Smith chart through
lossless junctions,” Proc. IEE, vol. 105, pt C, pp. 177-182; March,
1958.

1]. R. G. Twisleton, “The transformation of admittance through
a matching section and lossless waveguide junction,” Proc. IEE, vol.
106, pt. B, pp. 175-179; March, 1959.
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Fig. 1—The transformation of reflection coefficients through
a two-port. (a) g1=g1(g:). (b) g2 =2g2(g.).

of gy is determined too, because for all lossless two-
ports the equation holds:

‘ gml == l §20

B. Frequency Independent Transformation
Although (1) and (2) are valid for general lossless
two-port structures, we want now to introduce some
simplifications that will contribute considerably to the

clarity and simplicity of the following discussion. We

have, assuming the case of relatively small reflections,
| ggo| <1 and | ggo| <1

This leads to the simplification of (1) and (2):

810

g1 = g — =& 3
820
820

g2 =820 — — - 4
£10

Let us now investigate the behavior of the transforma-
tion in the given frequency band. Every two-port net-
work has its specific behavior of frequency response of
the residual reflection coefficients, which could be
checked by measurement. One possible example of thé
measured values (thick curve) is shown in Fig. 2. This
figure and many other similar plots lead to the conclu-
sion that the reflection coefficient response can be rep-
resented approximately by the arc of a circle (thin curve
on Fig. 2), the center of which is shifted to the point
le

g10 = Rug - 710e?10—70); (5)

where fy denotes the center frequency of the frequency
band. The frequency response of g can be correspond-
ingly, in most cases, approximated by the expression

g‘ZO = R20 + 72067'.020—."0). (6)

Real quantities py and ps are expressed in arc degrees per
Mc and determine the rate at which the point is cir-
culating around the diagram when the frequency f is
changing.

Let us now consider the transformation (3) and re-
quire the transformation to be frequency independent.
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Fig. 2—Typical plot of input reflection coefficient (thick curve),
which can be approximated with a circle arc (thin curve).

We choose a constant load reflection coefficient g. to
transform it into one constant value of {requency inde-
pendent input reflection coefficient g1 We require that

dgl
— = 0. 7
<df >f=fo ( )

Using the rule for derivation of indirect functions, we
obtain (8) from (3), and (5)—(7):

8200
& = —‘—g—i’_ : (8)
00p272
j o el
20001710
where gio and geo denote the residual reflection co-
efficients at the center frequency (see Fig. 2). Then we

have
8100 = (g10)f=fo = Rig+ 10 (9)

g200 = (g20)s=ry = Raoo + 720. (10)

From (3) we find that the load reflection coefficient g,
will be transformed in the input reflection coefficient gi;:

Z1o00

Z200p1710

(11)

g =

Z1oop2¥20

After having terminated the output terminals in a load,
then the two-port network will transform the load re-
flection coefficient g, into the vicinity of one point g
only, almost independent of frequency. Thus the trans-
formation is frequency independent, although the
measurements of g and gy have shown that the
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parameters of the two-port network vary with fre-
quency.

Matching of the two-port network will be attained if
we terminate its input in a circuit having the reflection
coefficient g, that is equal to the conjugate value of the
reflection coefficient gy The matching condition there-
fore is

(12)

where g,; designates the reflection coefficient of the in-
put circuit required for frequency independent match-
ing of the two-port network which is loaded with gy.
We shall call g, and g, the optimum reflection co-
efficients. In order to match the two-port network in an
almost frequency independent manner, the input and
output circuits should have the following reflection co-
efficients:

gk = Z1k,

Z200

grk = _ (13)
Z1o0p27 20
1 P
£20001710
and
§100
8sk = _ (14)
8200P1710
1 -
g100p2¥20

C. Example of Frequency Independent Transformation

Assume we have the two-port network shown in Fig.
3. Let the waveguide have constant dimensions (RG-
48/U) throughout its length. Let the lengths 6, and
8.2 corresponding to the center frequency (3000 Mc)
be 150° and 40°, respectively. The normalized suscept-
ances j0.2 and —j0.3 are assumed to be frequency in-
dependent. We shall investigate the two-port network
properties over the frequency band 2800-3200 Mec.

e)( 1 ex 2

j62

e

o O

c

Fig. 3—Example of a two-port.

We shall now compute the residual reflection co-
efficients gip and g, which could be obtained from
measurements of network on Fig. 3. The results are
shown in Fig. 4. At the center {requency we read the
values of the residual reflection coefficients as

groo = 0.137¢’%° and  geeo = 0.137¢715%,

As we see, we can replace this reflection coefficient plot
well by the circle arcs. At the center frequency, the
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Fig. 4—The residual reflection coefficients gio and gzo for the two-port
from Fig. 3. It also shows the transformation of g+ into gu,
which does not vary with frequency.

complex radii 71 and 7y are found to have these values:

710 = 0.148¢72° and 7y = 0.0037%%°,

By dividing the angle differences (designated in Fig. 4
as A and A&,), by the frequency difference, the rates
of rotation are found to be

A§y 76
p1 = ——— — = — —— = — 0,190°/Mc
3200 — 2800 400
Afs 88 .
pg = —————— = — —— = — (,220°/Mec.
3200 — 2800 100

Input and output optimum reflection coefficients are
obtained from (13) and (14):

g = 0.0904¢776%°, g, = 0.122¢/101°,

We next check on the Smith chart to see whether the
transformation is {requency independent. The pro-
cedure of transformation is shown in Fig. 4. The load
reflection coefficient is transformed along the length
6.2 into the point ¢ in such a way that g. is rotated clock-
wise by the angle 26,,, which depends on {requency.
Afterwards the susceptance —j0.3 is added and the
reflection coefficient response denoted by ¢’ is obtained.
After the new 26, degrees rotation we get the reflec-
tion coefficient at point ¢. Addition of the susceptance
70.2 leads finally to the point d’ representing the input
reflection coefficient. At the center frequency the input
reflection coefficient is equal to the computed value
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g1r =g, and it differs negligibly from this value at other
frequericies. As we see, the transformation is almost
completely frequency independent.

D. Example of Wide-Band Matching Procedure

It is not possible, however, to terminate the wave-
guide two-ports with optimum reflection coefficients
chosen anywhere on the Smith chart. The two-port
network is usually terminated in a matched waveguide
(its reflection coefficient is zero) to which we connect in
paralle! an inductive iris. The width of the iris aperture
controls the magnitude of the parallel susceptance,
which we suppose here to be independent of frequency.
Consequently, only those values of the optimum reflec-
tion coefficients are available, whose corresponding
points lic on the R=1 circle of the Smith chart. We
have therefore to extend the two-port network by an
additional length #; and 6. of the waveguide, as shown
in Fig. 5. As a result of this extension, the reflection co-
efficients g, and g.;, fall on the R=1 circle of the Smith
chart. The matching irises are then placed there.

| ©r O S: | &

~J84

f
% Jj02 50,3 782

! o
d

® 3

c b

Q

Fig. 5-—Addition of the inductive susceptances in order to
match the two-port from Fig. 3.

According to Fig. 4, g4 will reach the negative
R=1 circle provided that the output terminals are
shifted by 206;=116°. Similarly, the input terminals
should be shifted by 20, =344°. The shift of the input
and output terminals results in the rotation of the
residual reflection coefficients g1y and gs. If this rotation
were frequency independent, this procedure would be
casy. Unfortunately, the rotation increases with in-
creased frequency. The length 26, corresponding to the
frequency 2800 Mc, is shorter by 44° than the value at
the center {frequency, and at the frequency 3200 Mec it is
longer by the same amount. The gy plot is therefore
somewhat lengthened, as shown in Fig. 6. The mean
rotation 26, was not shown in order to get a clearer
picture. The mean rotation is the same for all points:

g100’ = grooe™? ¥t = 0.137¢77%3%°

8200 = gagoe ¥z = 0.137¢24%,
Let us now find the new centers of curvature denoted by
Ry and Ry/. Following the same procedure, we read the
new circle radii and the rates of rotation. By using (13)

and (14), we can evaluate the corrected optimum reflec-
tion coefficients,

g’ = 0.109¢7%" and g, = 0.0548¢77%,
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Fig. 6—Calculation of optimum reflection coefficients gs and ge.

where g’ and g’ have now approached the R=1
circle. We have to correct the values of 26; and 26, and
to repeat the whole procedure. By this trial and error
method we finally obtain

ga = 0.114e7¢, gy’ = 0.053¢7F

20, = 334°, 20,/ = 97°,

The susceptance values of the irises can be read on the
Smith chart as

B; =011 and B;= 0.23.

Having determined the position and size of the inductive
irises that lead to the frequency independent matching
of the given two-port network, our problem is solved.

To check the frequency behavior of matching over
the frequency band of 2800 to 3200 Mc, we shall com-
pute the input impedance using the Smith chart in
Fig. 7. We shall begin from the output side, where the
reflection coefficient g,;"’' is connected at the point a.
Rotation 2(#,-+6.,) degrees gives the reflection co-
efficient at point ¢. Adding the parallel susceptance
—70.3 we then get the reflection coefficient denote by
¢’. Rotation of 20,; gives the curve d, and addition of
the susceptance j0.2 leads later to the curve d’. After
20, rotation we get the curve e, to which we add the
susceptance —jB;= —j0.11 in parallel. So, a quite well
matched input has been achieved (reflection coefficient
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Fig. 7—Transformation of the load reflection coefficient ¢ (inductive
obstacle added) into an input reflection coefficient ¢/, Compare
the matched reflection coefficient ¢’ with the unmatched gio from
Fig. 4.

¢’). Within the 2900-3200 Mc band the VSWR is less
than 1.05 and within the 2800 to 3200 Mc band it is less
than 1.1.

I1I.

For considerable number of waveguide lossless two-
ports the frequency behavior of residual reflection co-
efficients may be approximated by circular arcs. Each
two-port of such a kind has one fixed pair of optimum
reflection coefficients (g and g.x), which are trans-
formed through the two-port independent of frequency.
To utilize this fact for wide-band matching of two-ports,
the reflection coefficient of external input and output
circuit must be made equal to g, and g In the method
described, the matching is attained by putting the in-
ductive obstacles at a certain distance from two-port
terminals. The position and the value of inductive
susceptances is calculated from measured curves of
residual input and output reflection coefficients plotted
on a Smith diagram.

For the sake of clarity, it is assumed that the suscept-
ance of obstacles does not vary with the frequency.
This is not true for a very large band of frequencies,
and the correction of position and value of obstacle
must be calculated; this problem is not treated in this
paper.

The method presented is valid for lossless two-ports
but can probably be extended to lossy two-ports.

CONCLUSIONS



